truck travelled from Town A to Town B. A van travelled from Town B to Town A at the same time . They met 10 km from the middle of the journey. Find the distance between Town A and Town B if the truck and the van travelled at 85 km / h and 60 km / h respectively .​

Respuesta :

Answer:

58 miles

Step-by-step explanation:

              One truck                           second truck

rate               85                                          60

time                t                                              t

Distance      d + 10                                     d -10

d + 10 = 85t                                                d - 10 = 60t

d = 85= -10                                                  d = 60t +10

Set the two equations equal to each other and solve

85t -10 = 60t + 10  Subtract 60t from each side

25t - 10 = 10  Add 10 to each side

25 t = 20  Divide both sides by 25

t = [tex]\frac{4}{5}[/tex]

Each were driving 4/5 of an hour.  Plug into the one of the equaions

d + 10 = 85t

d + 10 = 85([tex]\frac{4}{5}[/tex])

d +10 = 68  Subtract 10 from both sides

d = 58

Answer:

Step-by-step explanation:

Givens

Truck = 85 km/hr

Van = 65 km/hr

t is the time they meet

Note

Truck A is travelling faster, so the place where they meet is closest to Town B.

Solution

Let the distance travelled by the truck be

d/2 + 10

Let the distance travelled by the van be

-d/2 + 10

Let t be the time they meet

85* (d/2 + 10) /t = -60*(d/2 + 10)/t            multiply both sides by t

85*(d/2 + 10)*t/t = -60*(d/2 + 10)*t/t         Combine

85*(d/2 + 10) = -60(d/2 + 10)                    Remove the brackets.

42.5 d + 850 = -30d - 600                      Add 30 d to both sides

72.5d+ 850 = - 600                                 Subtract 850 from both sides.

72.5d = - 600 - 850                                 Combine

72.5d = -1450                                           Divide by 72.5  

d = -1450 / 72.5

d = -20

The minus means that you are looking at it from the van's point of view.