a fair 6-sided die is repeatedly rolled until an odd number appears. what is the probability that every even number appears at least once before the first occurrence of an odd number?

Respuesta :

The probability that every even number appears at least once before the first occurrence of an odd number is  [tex]\frac{1}{20}[/tex]

Take  [tex]A_{k}[/tex]  - the event that odd number appeared on the k-th throw,  B  - every even number appeared at least once.

Let’s find  P(B|[tex]A_{k}[/tex]) . Note that this probability is 0 for  k∈{1,2,3}  as you need  k≥4  to place all distinct even numbers before the odd one.

Now for  k≥4  we need to use the formula of inclusions and exclusions:  P(B¯|[tex]A_{k}[/tex])=P(C2+C4+C6|[tex]A_{k}[/tex])=

=P(C2|[tex]A_{k}[/tex])+P(C4|[tex]A_{k}[/tex])+P(C6|[tex]A_{k}[/tex])−P(C2C4|[tex]A_{k}[/tex])−P(C2C6|[tex]A_{k}[/tex])−P(C4C6|[tex]A_{k}[/tex])  where  Ci  is the event that the dice i is missing.

These probabilities are:

P(Ci/[tex]A_{k}[/tex])=[tex](\frac{2}{3} )^{k-1}[/tex]

P(CiCj|[tex]A_{k}[/tex])=[tex](\frac{1}{3} )^{k-1}[/tex]

So

P(B|[tex]A_{k}[/tex])=1–P(B¯|[tex]A_{k}[/tex])=1−3⋅[tex](\frac{2}{3} )^{k-1}[/tex]+3[tex](\frac{2}{3} )^{k-1}[/tex].= 1 − [tex]\frac{9}{2}[/tex].[tex](\frac{2}{3} )^{k}[/tex]+9[tex](\frac{1}{3} )^{k}[/tex]

Now as  P([tex]A_{k}[/tex])= [tex]\frac{1}{2^{k} }[/tex]we conclude that

P(B) = ∞∑k=4P(B/[tex]A_{k}[/tex])P([tex]A_{k}[/tex])=  ∞∑k=4([tex](\frac{1}{2} )^{k}[/tex]−[tex]\frac{9}{2}[/tex][tex](\frac{1}{3} )^{k}[/tex]+9.[tex](\frac{1}{6} )^{k}[/tex])=

=[tex]\frac{\frac{1}{16} }{\frac{1}{2} }[/tex]−[tex]\frac{\frac{1}{18} }{\frac{2}{3} }[/tex]+[tex]\frac{\frac{1}{144} }{\frac{5}{6} }[/tex] = [tex]\frac{1}{8}[/tex] -[tex]\frac{1}{12}[/tex] + [tex]\frac{1}{120}[/tex] =[tex]\frac{6}{120}[/tex] = [tex]\frac{1}{20}[/tex]

the probability that every even number appears at least once before the first occurrence of an odd number is  [tex]\frac{1}{20}[/tex]

To learn more about even numbers:

https://brainly.com/question/2289438

#SPJ4