Respuesta :

Given function

  • f(x) = 9x - 3

Find the following

  • d) f(a + h) = 9(a + h) - 3
  • e) f(a) + f(h) = 9a - 3 + 9h - 3 = 9(a + h) - 6
  • f) [f(a + h)  - f(a)]/h =

           [ 9(a + h) - 3 - 9a + 3]/h =

          9h /h = 9

Answer:

[tex]\textsf{(d)} \quad \boxed{9a+9h-3}[/tex]

[tex]\textsf{(e)} \quad \boxed{9a+9h-6}[/tex]

[tex]\textsf{(f)} \quad \boxed{9}[/tex]

Step-by-step explanation:

Given function:

[tex]f(x) = 9x - 3[/tex]

Part (d)

To find f(a + h), substitute x = a + h into the function:

[tex]\begin{aligned}\implies f(a+h)&=9(a+h)-3\\&=9a+9h-3\end{aligned}[/tex]

Part (e)

Find f(a) by substituting x = a into the function:

[tex]\implies f(a)=9a-3[/tex]

Find f(h) by substituting x = h into the function:

[tex]\implies f(h)=9h-3[/tex]

Therefore:

[tex]\begin{aligned}\implies f(a)+f(h)&=(9a-3)+(9h-3)\\&=9a-3+9h-3\\&=9a+9h-6\end{aligned}[/tex]

Part (f)

[tex]\begin{aligned}\implies \dfrac{f(a+h)-f(a)}{h}&=\dfrac{(9(a+h)-3)-(9a-3)}{h}\\\\&=\dfrac{9a+9h-3-9a+3}{h}\\\\&=\dfrac{9h}{h}\\\\&=9\end{aligned}[/tex]