Use the table of values of f(x, y) to estimate the values of fx(3, 2), fx(3, 2.2), and fxy(3, 2).
y 1.8 2.0 2.2
x
2.5 12.5 10.2 9.3
3.0 18.1 17.5 15.9
3.5 20.0 22.4 26.1

Respuesta :

The value of [tex]f_{x}[/tex](3,2)≈12.2, [tex]f_{x}[/tex](3,2.2)≈16.8, [tex]f_{x}[/tex](3,2)≈23.25

This problem aims to find the values of a function having alternate independent variables.

A-

[tex]f_{x}(3,2) f_{x} (x,y)=lim_{h-0} \frac{(3+0.5,2)-f(3,2)}{0.5}[/tex]    considering h =±0.5

Solving for h=0.5

⇒[tex]\frac{f(3.5,2)-f(3,2)}{0.5}[/tex]

Using the table to plug in the values of the function: 22.4-17.5/0.5=9.8

Now, solving for h=-0.5

⇒[tex]\frac{f(3.5,2)-f(3,2)}{-0.5}[/tex]

Using the table to plug in the values of the function: 22.4-17.5/(-0.5)=14.6

Taking the average of both ±0.5 answers for the final answer of f(3,2)

[tex]f_{x}(3,2)=\frac{9.8+14.6}{2} \\or, f_{x}(3,2)=12.2[/tex]

B-

[tex]f_{x}(3,2.2)=lim_{h-0} \frac{(3+0.5,2.2)-f(3,2.2)}{0.5}[/tex]    considering h =±0.5

Solving for h=0.5

⇒[tex]\frac{f(3.5,2.2)-f(3,2.2)}{-0.5}[/tex]

Using the table to plug in the values of the function: 26.1-15.9/0.5=20.4

Now, solving for h=-0.5

⇒[tex]\frac{f(2.5,2.2)-f(3,2.2)}{-0.5}[/tex]

Using the table to plug in the values of the function: 9.3-15.9/(-0.5)=13.2

Taking the average of both ±0.5 answers for the final answer of f(3,2.2)

[tex]f_{x}(3,2.2)=\frac{20.4+13.2}{2} \\or, f_{x}(3,2.2)=16.8[/tex]

C-

[tex]f_{xy} (3,2)=lim_{h-0} \frac{f_{x}(3,2+h)-f_{x} (3,2) }{h} \\[/tex]     considering h =±0.2

Solving for h=0.2

⇒[tex]\frac{f_{x} (3,2.2)-f_{x} (3,2)}{0.2}[/tex]

Plugging in the answers from A and B: 16.8-12.2/0.2= 23

Now solving for h= -0.2

⇒[tex]\frac{f_{x} (3,1.8)-f_{x} (3,2)}{-0.2}[/tex]

Plugging in the values: 7.5-12.2/-0.2= 23.5

Taking an average of h=±0.2 answers to find the final answer:

[tex]f_{x}(3,2)=\frac{23+23.5}{2} \\or, f_{x}(3,2)=23.25[/tex]

To know more about limits visit: brainly.com/question/8533149

#SPJ4

Ver imagen debjitbhowal4568