how many bit-strings of length 12 contain a) exactly three 1s b) at most three 1s c) at least three 1s d) an equal number of zeros and ones?

Respuesta :

a) Number of bit string = 220

b)  Number of bit string = 299

c)  Number of bit string = 4017

d)  Number of bit string = 924

What is Combination?

Combinations are mathematical operations that count the number of potential configurations for a set of elements when the order of the selection is irrelevant.

Given:

a) n= 12, r= 3

[tex]^{12}C_3[/tex] = 12! / 3! 9 !

      = 12 x 11 x 10 x 9! / 3 x 2 x 9!

      = 220

b)  n= 12, r ≤ 3

[tex]^{12}C_3[/tex] = 12! / 3! 9 !

      = 12 x 11 x 10 x 9! / 3 x 2 x 9!

      = 220

[tex]^{12}C_2[/tex] = 12! / 2! 10 !

      = 12 x 11 x 10! / 2 x 10!

      = 66

[tex]^{12}C_1[/tex] = 12! / 1! 11!

      = 12

[tex]^{12}C_0[/tex] = 12! / 0! 12 !

      = 12 x 11 x 10 x 9! / 3 x 2 x 9!

      = 1

So, total number of bit strings = 220 +66 + 12 +1 =299

c)  n= 12, r ≥ 3

[tex]^{12}C_3[/tex] = 12! / 3! 9 !

      = 12 x 11 x 10 x 9! / 3 x 2 x 9!

      = 220

[tex]^{12}C_4[/tex] = 495

[tex]^{12}C_5[/tex] = 792

[tex]^{12}C_6[/tex] = 924

[tex]^{12}C_7[/tex] = 792

[tex]^{12}C_8[/tex] = 495

[tex]^{12}C_9[/tex] = 220

[tex]^{12}C_{10[/tex] = 66

[tex]^{12}C_{12[/tex] = 12

[tex]^{12}C_{12[/tex] = 1

So, total String= 4017

d)  n= 12 and r= 6

[tex]^{12}C_6[/tex] = 12!/ 6! 6!

       = 12 x 11 x 10 x 9 x 8 x 7 x 6! / 6! 6!

       = 924

Learn more about Combination here:

https://brainly.com/question/28720645

#SPJ1