Use Taylor's Theorem to obtain an upper bound for the error of the approximation. Then calculate the exact value of the error. Round your answers to three significant figures.)
cos(0.3)=1−(0.3)22!+(0.3)44!
R4≤ .
R4=.

Respuesta :

Answer:

Step-by-step explanation:

According to Tylor theorem,

f(x)=f(a)+f′(a)/1!×(x−a)+f′′(a)/2!×(x−a)2+......+fn(a)/n!×(x−a)n

Tylor series for cosx is

1 - x^2/2! + x^4/4! + x^6/6! + ……

cos (0.3) = 1 - 〖(0.3)〗^2/2! + 〖(0.3)〗^4/4!

The R4 valur is fourth derivative of cosx

f’(x) = -sinx

f’’ (x) = -cosx

f’’’ (x) = sinx

f’’’’ (x) = cosx

Here, a = 0, n = 3, x = 0.3

max l f^4l = cos (0.3)

               = 0.9999

lR_4  (x)l ≤ |0.3-0|^(4+1)/4! × 0.9999

              ≤ 0.00015186

               = 1.51786 × 10^(-4)

R_n (x) = cos (0.3) – (1 - 〖(0.3)〗^2/2!-(0.3)^4/4!)

          = 0.0446

The error of approximation R_4  (x) ≤ 1.2 × 10^(-2) and exact value of error R_4 = 0.0446