Respuesta :
Answer:
A) Exponential function
[tex]\textsf{B)} \quad f(x)=1.5(2)^x[/tex]
C) Average rate of change = 9
Step-by-step explanation:
Part A
Given points:
- (1, 3)
- (2, 6)
- (3, 12)
- (4, 24)
The rate of change of a linear function is constant, so the given data is modelling an exponential function since the y-values are doubling for each unit increase.
Part B
[tex]\boxed{\begin{minipage}{9 cm}\underline{General form of an Exponential Function}\\\\$f(x)=ab^x$\\\\where:\\\phantom{ww}$\bullet$ $a$ is the initial value ($y$-intercept). \\ \phantom{ww}$\bullet$ $b$ is the base (growth/decay factor) in decimal form.\\\end{minipage}}[/tex]
The y-values double per unit increase, so the base, b, is 2.
Substitute the value of b = 2 and point (1, 3) into the formula and solve for a:
[tex]\implies 3=a2^1[/tex]
[tex]\implies 3=2a[/tex]
[tex]\implies a=\dfrac{3}{2}=1.5[/tex]
Therefore, the function that represents the data is:
[tex]f(x)=1.5(2)^x[/tex]
Part C
[tex]\boxed{\begin{minipage}{6.3 cm}\underline{Average rate of change of function $f(x)$}\\\\$\dfrac{f(b)-f(a)}{b-a}$\\\\over the interval $a \leq x \leq b$\\\end{minipage}}[/tex]
Given interval:
- 2 ≤ x ≤ 4
Therefore, a = 2 and b = 4.
From the given points:
- f(2) = 6
- f(4) = 24
Therefore, the average rate of change is:
[tex]\implies \dfrac{f(4)-f(2)}{4-2}=\dfrac{24-6}{4-2}=\dfrac{18}{2}=9[/tex]