P(D|FS)=.9529
If F and S are conditionally independent given D and ~D, then
P(FSD)= P(D)P(F|D)P(S|D)
P(FS~D) = P(~D)P(F|~D)P(S|~D)
P(F|~D) = 1 - P(~F|~D)
P(S|~D) = 1 - P(~S|~D)
P(~D) = 1 - P(D)
P(D|FS) = P(FSD)/(P(FSD) + P(FS~D))
P(F|D) = P(S|D) = .9
P(~F|~D) = P(~S|~D) = .9
P(D = .2)
Then, P(FSD) = P(D)P(F|D)P(S|D) = .2*.9*.9 = .162
P(FS~D) = P(~D)P(F|~D)P(S|~D) = (1 - .2)(1 - .9)(1 - .9)= .008
P(D|FS) = P(FSD)/(P(FSD) + P(FS~D)) = .162/(.162+.008) = 162/170=81/85 = .9529
To learn more about conditional independent events follow link : https://brainly.com/question/12783373