After a long study, tree scientists conclude that a eucalyptus tree will grow at the rate of 0.6+4 /(t+4)^3 feet per year, where t is the time (in years).
(a) Find the number of feet that the tree will grow in the second year.
(b) Find the number of feet the tree will grow in the third year.

Respuesta :

a.) 0.5367 feet

b.) 0.5223 feet'

Given the rate at which an eucalyptus tree will grow modelled by the equation 0.5+6/(t+4)³ feet per year, where t is the time (in years).

The amount of growth can be gotten by integrating the given rate equation as shown:

[tex]\int\limits {0.5} \, + \frac{6}{(t+4)^{3} } dt[/tex]

[tex]=\int\limits {0.5} \,dt + \int\limits\frac{6}{(t+4)^{3} } dx[/tex]

[tex]=0.5t+\int\limits6u^{-3} du \, \,where \,u=t +4 \, and \, du=dt[/tex]

[tex]=0.5t+6*\frac{u^{-3} }{-2} + C[/tex]

[tex]=0.5t-3u^{-2}+C[/tex]

[tex]=0.5t-3(t+4)^{-2} +C[/tex]

a)  The number of feet that the tree will grow in the second year can be gotten by taking the limit of the integral from  t =1 to t = 2

[tex]\int\limits^2_1 {0.5} \,dt + \int\limits\frac{6}{(t+4)^{3} } dx \, =[0.5t-3(t+4)^{-2} ][/tex]

[tex]=[0.5(2)-3(2+4)^{-2} ]-[0.5-3(5)^{-2} ][/tex]

[tex]=\frac{11}{12}-\frac{1}{2}-\frac{3}{25}[/tex]

[tex]=0.9167-0.5+0.12[/tex]

[tex]=0.5367[/tex]

b)  The number of feet that the tree will grow in the third year can be gotten by taking the limit of the integral from  t =2 to t = 3

[tex]\int\limits^3_2 {0.5} \,dt + \int\limits\frac{6}{(t+4)^{3} } dx \,[/tex]

[tex]=[0.5t-3(t+4)^{-2} ][/tex]

[tex]=[1.5-\frac{3}{49} ]-[1-\frac{1}{12} ][/tex]

=1.439-0.9167

=0.5223 feet

To learn more about integration follow link : https://brainly.com/question/16789471

#SPJ4