Respuesta :

Therefore ,E = xex2 + y2 + z2 dv, where e is the portion of the unit ball x2 + y2 + z2 ≤ 1 that lies in the first octant whose value is π/8

What is Volume?

The volume of an inhabited three-dimensional space is calculated. It is commonly measured in a variety of imperial, US-standard, and SI-derived units. Volume and the notion of length are interconnected.

Here,

Given :

portion of unit ball = [tex]xe^{x^{2}+y^{2} +z^{2} }[/tex]

and x2 + y2 + z2 ≤ 1

So, using this

We find the triple integral or the volume integral of the expression  = [tex]xe^{x^{2}+y^{2} +z^{2} }[/tex]

=> [tex]\int\int\int_{e} xe^{x^{2}+y^{2} +z^{2} }[/tex]dV

=>   [tex]\int\limits^{\alpha = \pi /2}_{\alpha =0}\int\limits^{\beta = \pi /2}_{\beta =0} \int\limits^{p= 1}_{p=0}[/tex]   pcos[tex]\beta[/tex]sin[tex]\alpha[/tex][tex]e^{{p}^{2}[/tex] [tex]p^{2}[/tex]sin[tex]\alpha[/tex] dpd[tex]\alpha[/tex]d[tex]\beta[/tex]

=>[tex]\int\limits^{\alpha = \pi /2}_{\alpha =0}[/tex][tex]sin^{2}\alpha[/tex] d[tex]\alpha[/tex]  + [tex]\int\limits^{\beta = \pi /2}_{\beta =0}[/tex]cos[tex]\beta[/tex] d[tex]\beta[/tex]  +  [tex]\int\limits^{p= 1}_{p=0} p^{2} e^{p^{2}}[/tex] dp

=>π/8

Therefore ,E xex2 + y2 + z2 dv, where e is the portion of the unit ball x2 + y2 + z2 ≤ 1 that lies in the first octant whose value is π/8

To know more about volume , visit

https://brainly.com/question/13338592

#SPJ4