Respuesta :

Answer:

Foci:  (±5, 0)

Vertex: ( ±4 , 0)

Eccentricity: e = 5/4

Step-by-step explanation:

Hyperbola:

   Write the equation of hyperbola in the form,

              [tex]\boxed{\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1}[/tex]

9x² - 16y² = 144

Divide the entire equation by 144,

          [tex]\sf \dfrac{9x^2}{144}-\dfrac{16y^2}{144}=\dfrac{144}{144}\\\\\\ \dfrac{x^2}{16}-\dfrac{y^2}{9}=1\\\\\\\dfrac{x^2}{4^2}-\dfrac{y^2}{3^2}=1[/tex]

a = 4 and b =3

  Eccentricity: e

           [tex]\boxed{e=\sqrt{1+\dfrac{b^2}{a^2}}}[/tex]

                [tex]\sf = \sqrt{1+\dfrac{9}{16}}\\\\=\sqrt{\dfrac{16}{16}+\dfrac{9}{16}}\\\\=\sqrt{\dfrac{25}{16}}=\sqrt{\dfrac{5*5}{4*4}}\\\\\\=\dfrac{5}{4}[/tex]

Foci:

         (ae, 0)  & (-ae , 0)

          [tex]\sf \left(4*\dfrac{5}{4},0 \right) \ ; \ \left( -4*\dfrac{5}{4},0 \right)\\\\\\(5, 0) \ ; \ (-5,0)[/tex]

Vertex of hyperbola:

       The vertex of the hyperbola is a point where the hyperbola cuts the axis.  (-a , 0)  ; (a , 0)

 Vertex : (-4 , 0) ; (4 , 0)

                   

The solution for this question is as follows:

Vertices ≈ (±4 , 0)

Foci ≈ (±5 , 0)

Eccentricity: e = 5/4

Asymptotes: y=  ±(3/4)x

Hyperbola:

The location of all the points on a plane where the distance between them and two fixed points in the plane is always equal to zero is called a hyperbola.

Step by step solution:

Given: [tex]9x^{2} -16y^{2} =144[/tex]      

The given equation of hyperbola can be written as:

⇒[tex]\frac{x^{2} }{16} -\frac{y^{2} }{9} =1[/tex]

On comparing with standard equation of hyperbola; [tex]\frac{x^{2} }{a} -\frac{y^{2} }{b} =1[/tex]

We get; a=4 and b=3

The eccentricity of hyperbola is given by:

      9=16(e^2 - 1)

So; e^2 = (9/16) + 1

       e^2 = 25/16

       e = 5/4

The vertices of hyperbola are given by (±a , 0) ≈ (±4 , 0)

The foci of hyperbola are given by (±ae , 0) ≈ (±5 , 0)

The asymptotes of hyperbola are given by y= ± (b/a)x  

                                                                        y=  ±(3/4)x

To learn more about "Hyperbola" here:

brainly.com/question/19989302