Respuesta :
Answer:
We need to change that 80% of almond into 40%, by adding more peanuts. To do this, we must add the same weight of peanuts as there is in the 80-20 mixture, to halve the ratio of almonds.
Therefore, p=m
Because the total mixture is 5 lbs, and the 80-20 and peanut mixture are the same weight, we know that p=m=2.5 lbs
Step-by-step explanation:
Answer:
- p + m = 5, p + 0.2m = 0.6(5)
- 2.5 lb peanuts; 2.5 lb almond mix
Step-by-step explanation:
You have peanuts and an 80-20 almond-peanut mix, and you want to know how many pound of each are needed for 5 lb of a 60% peanut mix.
System of equations
The system of equations relating the pounds of peanuts (p) and the pounds of almond mix (m) will describe the total mixture weight, and the weight of the peanuts.
p + m = 5 . . . . . . total mixture weight is 5 lb
p + 0.20m = 0.60(5) . . . . . weight of peanuts in the 60% peanut mix
Solution
We can subtract the second equation from the first to eliminate the variable p:
(p +m) -(p +.2m) = (5) -(.6)(5)
0.8m = 0.4(5) . . . simplify
m = 2.5 . . . . . . . . divide by 0.8
p = 5 -m = 2.5
The solution to the system is 2.5 lb peanuts and 2.5 lb mixture.