[tex]{ \qquad\qquad\huge\underline{{\sf Answer}}} [/tex]
Here's the solution ~
The two triangles in the shown figure are similar, therefore conclusion can be made that :
Ratio of its it's corresponding sides is equal.
[tex]\qquad \sf \dashrightarrow \: \dfrac{2x - 4 + 6}{6} = \dfrac{24}{4} [/tex]
[tex]\qquad \sf \dashrightarrow \: \dfrac{2x + 2}{6} = 6[/tex]
[tex]\qquad \sf \dashrightarrow \: 2x + 2 = 6 \times 6[/tex]
[tex]\qquad \sf \dashrightarrow \: 2x + 2 = 36[/tex]
[tex]\qquad \sf \dashrightarrow \: 2x = 36 - 2[/tex]
[tex]\qquad \sf \dashrightarrow \: 2x = 34[/tex]
[tex]\qquad \sf \dashrightarrow \: x = 17[/tex]
Therefore, The value of x is " 17 "
Now, the measure of side BC is :
[tex]\qquad \sf \dashrightarrow \: 2x - 4[/tex]
[tex]\qquad \sf \dashrightarrow \:2 (17) - 4[/tex]
[tex]\qquad \sf \dashrightarrow \: 34 - 4[/tex]
[tex]\qquad \sf \dashrightarrow \: 30 \: \: units[/tex]
So, its perimeter will be :
[tex]\qquad \sf \dashrightarrow \: p = AB + AB + BC [/tex]
[tex]\qquad \sf \dashrightarrow \: p = 24 + 26 + 30[/tex]
[tex]\qquad \sf \dashrightarrow \: p = 80 \: \: units[/tex]