I literally need so much help
Angie is working on solving the exponential equation 23x = 6; however, she is not quite sure where to start. Using complete sentences, describe to Angie how to solve this equation.

Hint: Use the change of base formula: log base b of y equals log y over log b.

Respuesta :

Answer:

[tex]x=\dfrac{\log 6}{\log 23}[/tex]

Step-by-step explanation:

Given exponential equation:

[tex]23^x=6[/tex]

[tex]\textsf{Apply the log law}: \quad a^c=b \iff \log_ab=c[/tex]

[tex]\implies\log_{23}6=x[/tex]

[tex]\textsf{Given change of base formula}: \quad \log_by=\dfrac{\log y}{\log b}}[/tex]

Apply the given change of base formula:

[tex]\implies x=\dfrac{\log 6}{\log 23}[/tex]