contestada

(a) A parallelogram has base (2x - 1) metres and height (4x-7) metres.
The area of the parallelogram is 1 m².
(i) Show that 4x² - 9x +3=0.
Answer (a)(i)

“please show steps and thank you”

Respuesta :

Answer:

We are given that the area of the parallelogram is 1 m², so we know that the product of the base and height must be 1 m², or:

Base x Height = 1 m²

Substituting in the values given:

(2x - 1) x (4x - 7) = 1

Rearranging to make 4x² the subject:

4x² - 9x + 7 = 0

Subtracting 7 from both sides:

4x² - 9x + 3 = 0

Therefore, 4x² - 9x + 3 = 0

Answer:

See below.

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{4 cm}\underline{Area of a parallelogram}\\\\$A=bh$\\\\where:\\ \phantom{ww}$\bullet$ $b$ is the base. \\ \phantom{ww}$\bullet$ $h$ is the height.\\\end{minipage}}[/tex]

Given:

  • [tex]b = (2x - 1)\;\sf m[/tex]
  • [tex]h = (4x - 7)\;\sf m[/tex]
  • [tex]A=1\;\sf m^2[/tex]

Substitute the expressions for b and h and the value of A into the formula for area:

[tex]\implies 1=(2x-1)(4x-7)[/tex]

[tex]\implies (2x-1)(4x-7)=1[/tex]

Expand the brackets:

[tex]\implies 8x^2-14x-4x+7=1[/tex]

[tex]\implies 8x^2-18x+7=1[/tex]

Subtract 1 from both sides of the equation:

[tex]\implies 8x^2-18x+7-1=1-1[/tex]

[tex]\implies 8x^2-18x+6=0[/tex]

Factor out 2 from the left side:

[tex]\implies 2(4x^2-9x+3)=0[/tex]

Divide both sides by 2:

[tex]\implies 4x^2-9x+3=0[/tex]

Hence, showing that 4x² - 9x + 3 = 0.