Respuesta :

The max displacement is the amplitude that is 5

Answer:

d=[tex]5[/tex]

Step-by-step explanation:

The given simple harmonic motion equation is given as:

d=[tex]5sin(2{\pi}t)[/tex]

Differentiating the above equation with respect to t, we have

[tex]d'=5cos(2{\pi}t)(2{\pi)[/tex]

[tex]d'=10{\pi}cos(2{\pi}t)[/tex]

Now, equating [tex]d'=0[/tex], we have

[tex]10{\pi}cos2{\pi}t=0[/tex]

[tex]cos2{\pi}t=0[/tex]

[tex]2{\pi}t=\frac{{\pi}}{2}[/tex]

[tex]t=\frac{1}{4}[/tex]

Also, differentiating again with respect to t, we get

[tex]d''=10{\pi}(-sin(2{\pi}t)(2{\pi})[/tex]

⇒[tex]d''<0[/tex]

Therefore, at t=[tex]\frac{1}{4}[/tex], d=[tex]5sin(2{\pi}t)[/tex] will have maximum displacement.

⇒d=[tex]5sin(2{\pi}(\frac{1}{4}))[/tex]

⇒d=[tex]5sin(\frac{\pi}{2})[/tex]

d=[tex]5[/tex]