contestada

What are the amplitude, period,Phase shift, and midline of f(x)=-3sin(4x-n)+2?
A) amplitude: 3; period: pie/2; phase shift: x= pie/4; midline: y=2
B) amplitude: -3; period: pie/2; phase shift: x= pie/2; midline: y=2
C) amplitude: 2; period: pie/4; phase shift: x= pie/4; midline: y=-3
D) amplitude: 2; period: pie/4; phase shift: x= pie/2; midline y=3

Respuesta :

Answer:

The answer is A) amplitude: 3; period: pie/2; phase shift: x= pie/4; midline: y=2

For given sinusoidal function f(x) = -3 sin(4x - n) + 2,

amplitude: 3; period: π/2; phase shift:  π/4; midline: y = 2

The correct answer is an option (A)

What is general form sinusoidal function?

"y = A sin(B(x - C)) + D,

The variables  A , B, C, and D are called parameters."

What is amplitude of sinusoidal function?

"The amplitude of the sinusoidal functions y = A sin(B(x - C)) + D and is the absolute value of the parameter  A ."

What is period of sinusoidal function?

"The period  P of the sinusoidal functions y = A sin(B(x - C)) + D is [tex]P=\frac{2\pi}{B}[/tex] "

What is midline of sinusoidal function?

  • "The midline of a sinusoidal function is the  y -value that the function oscillates above and below."
  • "The equation for the midline of a sinusoidal function is  y = D"

What is phase shift of sinusoidal function?

  • "The phase shift of sinusoidal function y = A sin(B(x - C)) + D is C."
  • "It is positive is to the left."

For given question,

We have been given a sinusoidal function f(x) = -3 sin(4x - π) + 2

We can write given sinusoidal function as, f(x) = -3 sin(4(x - π/4)) + 2

Comparing given equation with sinusoidal function y = A sin(B(x - C)) + D,

we have A = -3, B = 4, C = π/4 , D = 2

Using the definition of amplitude,

an amplitude of given sinusoidal function is:

⇒ |A| = |-3|

⇒ |A| = 3

So, the amplitude of given sinusoidal function is 3.

Using the definition of period of sinusoidal function,

[tex]\Rightarrow P=\frac{2\pi}{B}\\\\\Rightarrow P=\frac{2\pi}{4} \\\\\Rightarrow P=\frac{\pi}{2}[/tex]

So, the period of given sinusoidal function f(x) = -3 sin(4x - n) + 2 is [tex]\frac{\pi}{2}[/tex]

Using the definition of phase shift of sinusoidal function,

Phase shift (C) = π/4

Using the definition of midline of sinusoidal function,

midline of given  sinusoidal function is y = 2

Therefore, for given sinusoidal function f(x) = -3 sin(4x - n) + 2,

amplitude: 3; period: π/2; phase shift:  π/4; midline: y = 2

The correct answer is an option (A)

Learn more about sinusoidal function here:

https://brainly.com/question/12060967

#SPJ2