Respuesta :
[tex]x^2(y-6)=12y+3[/tex]
Differentiate:
[tex]2x\dfrac{\mathrm dx}{\mathrm dt}(y-6)+x^2\dfrac{\mathrm dy}{\mathrm dt}=12\dfrac{\mathrm dy}{\mathrm dt}[/tex]
Plug in everything you know: [tex]\dfrac{\mathrm dy}{\mathrm dt}=2[/tex], [tex]x=5[/tex], and [tex]y=12[/tex]
[tex]2(5)\dfrac{\mathrm dx}{\mathrm dt}(12-6)+5^2(2)=12(2)\implies\dfrac{\mathrm dx}{\mathrm dt}=-\dfrac{13}{30}[/tex]
Differentiate:
[tex]2x\dfrac{\mathrm dx}{\mathrm dt}(y-6)+x^2\dfrac{\mathrm dy}{\mathrm dt}=12\dfrac{\mathrm dy}{\mathrm dt}[/tex]
Plug in everything you know: [tex]\dfrac{\mathrm dy}{\mathrm dt}=2[/tex], [tex]x=5[/tex], and [tex]y=12[/tex]
[tex]2(5)\dfrac{\mathrm dx}{\mathrm dt}(12-6)+5^2(2)=12(2)\implies\dfrac{\mathrm dx}{\mathrm dt}=-\dfrac{13}{30}[/tex]
The value of dx/dt at given conditions is -13/30.
How is dx/dt calculated?
Given Equation:
[tex]x^{2} (y-6)=12y+3[/tex]
With the help of chain rule, we will differentiate the above eqn.
Differentiation of eqn w.r.t to t:
[tex]2x\dfrac{dx}{dt}(y-6)+x^{2}\dfrac{dy}{dt}=12\dfrac{dy}{dt}[/tex] {Since x and y are functions of t}
Given:
x=5, y=12, dy/dt=2 ,put values in above eqn.
[tex]2(5)\dfrac{dx}{dt}(12-6)+5^{2}(2) =12(2)\\\\ 60\dfrac{dx}{dt}=-26\\\\\dfrac{dx}{dt}=\dfrac{-13}{30}[/tex]
Therefore value of dx/dt is -13/30.
To know more about differentiation: https://brainly.in/question/1238773
#SPJ2