Respuesta :

5/2+(1/2)*sqrt(31), 5/2-(1/2)*sqrt(31)

Answer:

The zeros of the  quadratic function [tex]f(x)=2x^2-10x-3[/tex] are:

               [tex]x=\dfrac{5+\sqrt{31}}{2}\ ,\ x=\dfrac{5-\sqrt{31}}{2} [/tex]    

Step-by-step explanation:

Zeros of a function are the possible x values of the function for which the function is equal to zero.

i.e.  all those x for which  f(x)=0

We are given a function f(x) by:

   [tex]f(x)=2x^2-10x-3[/tex]

Now, f(x)=0

[tex]2x^2-10x-3=0[/tex]

We know that the solution of the quadratic equation of the type:

       [tex]ax^2+bx+c=0[/tex] is given by:

[tex]x=\dfrac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

Here we have:

a=2, b= -10 and c= -3

Hence, the solution is:

[tex]x=\dfrac{-(-10)\pm \sqrt{(-10)^2-4\times 2\times (-3)}}{2\times 2}\\\\\\x=\dfrac{10\pm \sqrt{100+24}}{4}\\\\\\x=\dfrac{10\pm \sqrt{124}}{4}\\\\\\x=\dfrac{10\pm 2\sqrt{31}}{4}\\\\\\x=\dfrac{5\pm \sqrt{31}}{2}[/tex]    

Hence,

[tex]x=\dfrac{5+\sqrt{31}}{2}[/tex] and [tex]x=\dfrac{5-\sqrt{31}}{2}[/tex]