Respuesta :

[tex]\bf recall\\\\ log_{{ a}}{{ b}}=y \iff {{ a}}^y={{ b}}\qquad\qquad {{ a}}^y={{ b}}\iff log_{{ a}}{{ b}}=y \\\\ -----------------------------\\\\ thus\qquad \begin{array}{cc|llll} x&y&5^y=x\\ \textendash\textendash\textendash\textendash\textendash\textendash&\textendash\textendash\textendash\textendash\textendash\textendash\\ 25&2&5^2=25\\ 125&3&5^3=125\\ 625&4&5^4=625\\ \end{array} \\\\\\ \textit{so hmmm what would that be in log notation? }\  5^y=x \iff \boxed{?}[/tex]

Answer:

[tex]f(x) =log_5 x[/tex]

Step-by-step explanation:

Here f(x)   =2 when x = 25 that is [tex]5^{2}[/tex]

        f(x) = 3  when x = 125 that is [tex]5^{3}[/tex]

       f(x) = 4 when x =625 that is [tex]5^{4}[/tex]

   [tex]f(x) =log_5 x[/tex]

here we can see that each value is exponent of 5

therefore function must be log function with base 5

so it is  [tex]f(x) =log_5 x[/tex]