Respuesta :

I hope this helps you



y-1=16x^2



y-1/16=x^2



x= square root of y-1/4



y^-1= square root of x-1/4

we have

[tex]y=16x^{2} +1[/tex]

Step 1

Exchange the variables x for y and y for x

[tex]x=16y^{2} +1[/tex]

Step 2

Clear variable y

[tex]x=16y^{2} +1[/tex]

Subtract [tex]1[/tex] both sides

[tex]x-1=16y^{2} +1-1[/tex]

[tex]x-1=16y^{2}[/tex]

Divide by [tex]16[/tex] both sides

[tex](x-1)/16=16y^{2}/16[/tex]

[tex](x-1)/16=y^{2}[/tex]

square root both sides

[tex]y=(+/-)\sqrt{\frac{x-1}{16}} \\ \\y=(+/-) \frac{1}{4} \sqrt{x-1}[/tex]

Step 3

Find the inverse

Let

[tex]f(x)^{-1} =y[/tex]

so

[tex]f(x)^{-1}=(+/-) \frac{1}{4} \sqrt{x-1}[/tex]

therefore

the answer is

[tex]f(x)^{-1}=(+/-) \frac{1}{4} \sqrt{x-1}[/tex]