Respuesta :
52.1-4.184=47.916 You then either add or subtract this from 68.6 the first temperature of the metal. This will give you your total.
Answer: The specific heat of the metal comes out to be [tex]3.423J/g^oC[/tex]
Explanation: Heat absorbed or heat lost, q is written as:
[tex]q=mc\Delta T[/tex]
We are given that an unknown metal is dropped in water. So, in this process:
Heat lost by the metal = Heat gained by the water
Mathematically,
[tex](mc\Delta T)_m=-(mc\Delta T)_w[/tex] ....(1)
- For metal:
[tex]T_2=52.1^oC[/tex]
[tex]T_1=100^oC[/tex]
[tex]\Delta T=T_2-T-1=(52.1-100)^oC=-47.9^oC[/tex]
m = 68.6 g
c = ?
- For Water:
[tex]T_2=52.1^oC[/tex]
[tex]T_1=20^oC[/tex]
[tex]\Delta T=T_2-T-1=(52.1-20)^oC=32.1^oC[/tex]
m = 84 g
[tex]c=4.184J/g^oC[/tex]
Putting this in equation 1, we get
[tex]68.6g\times c_m\times (-47.9^oC)=84g\times 4.184J/g^oC\times 32.1^oC[/tex]
[tex]c_m=3.423j/g^oC[/tex]