Respuesta :

The value of [tex]^nC_0 + ^nC_3 + ^nC_6 + ^nC_9[/tex] is [tex]1 + \frac{n!}{6}[\frac{1}{(n - 3)!}+\frac{1}{120(n - 6)!} + \frac{1}{60480(n - 9)!}][/tex]

The expression is given as:

[tex]^nC_0 + ^nC_3 + ^nC_6 + ^nC_9[/tex]

The combination formula is:

[tex]^nC_r = \frac{n!}{(n - r)!r!}[/tex]

So, we have:

[tex]\frac{n!}{(n - 0)!0!} + \frac{n!}{(n - 3)!3!}+\frac{n!}{(n - 6)!6!} + \frac{n!}{(n - 9)!9!}[/tex]

Evaluate the factorials

[tex]\frac{n!}{(n - 0)!} + \frac{n!}{6(n - 3)!}+\frac{n!}{720(n - 6)!} + \frac{n!}{362880(n - 9)!}[/tex]

Evaluate the difference

[tex]\frac{n!}{n!} + \frac{n!}{6(n - 3)!}+\frac{n!}{720(n - 6)!} + \frac{n!}{362880(n - 9)!}[/tex]

Evaluate the quotient

[tex]1 + \frac{n!}{6(n - 3)!}+\frac{n!}{720(n - 6)!} + \frac{n!}{362880(n - 9)!}[/tex]

Factor out n!

[tex]1 + n![\frac{1}{6(n - 3)!}+\frac{1}{720(n - 6)!} + \frac{1}{362880(n - 9)!}][/tex]

Factor out 1/6

[tex]1 + \frac{n!}{6}[\frac{1}{(n - 3)!}+\frac{1}{120(n - 6)!} + \frac{1}{60480(n - 9)!}][/tex]

Hence, the value of [tex]^nC_0 + ^nC_3 + ^nC_6 + ^nC_9[/tex] is

[tex]1 + \frac{n!}{6}[\frac{1}{(n - 3)!}+\frac{1}{120(n - 6)!} + \frac{1}{60480(n - 9)!}][/tex]

Read more about combination at:

https://brainly.com/question/4658834