Answer:
[tex]\displaystyle f'(x) = \frac{(x^2 + 2)(3x^4 - 6x^3 - 39x^2 - 36x + 14)}{(x^2 - 3x - 2)^2}[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Distributive Property
Algebra I
- Terms/Coefficients
- Expanding
- Factoring
- Functions
- Function Notation
Calculus
Derivatives
Derivative Notation
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Derivative Rule [Quotient Rule]: [tex]\displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}[/tex]
Derivative Rule [Chain Rule]: [tex]\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)[/tex]
Step-by-step explanation:
*Note:
This is a pretty dense problem!
Step 1: Define
Identify
[tex]\displaystyle f(x) = \frac{(x + 3)(x^2 + 2)^2}{x^2 - 3x - 2}[/tex]
Step 2: Differentiate
- Quotient Rule: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2)\frac{d}{dx}[(x + 3)(x^2 + 2)^2] - \frac{d}{dx}[(x^2 - 3x - 2)](x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- Basic Power Rule [Derivative Property - Subtraction]: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2)\frac{d}{dx}[(x + 3)(x^2 + 2)^2] - (2x^{2 - 1} - 3x^{1 - 1} - 0)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- Simplify: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2)\frac{d}{dx}[(x + 3)(x^2 + 2)^2] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- Product Rule: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ \frac{d}{dx}[(x + 3)](x^2 + 2)^2 + (x + 3)\frac{d}{dx}[(x^2 + 2)^2] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Basic Power Rule [Derivative Property - Addition]: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^{1 - 1} + 0)(x^2 + 2)^2 + (x + 3)\frac{d}{dx}[(x^2 + 2)^2] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Simplify: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + (x + 3)\frac{d}{dx}[(x^2 + 2)^2] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Chain Rule: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + (x + 3)2(x^2 + 2)^{2 - 1} \cdot \frac{d}{dx}[(x^2 + 2)] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Simplify: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + 2(x + 3)(x^2 + 2) \cdot \frac{d}{dx}[(x^2 + 2)] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Basic Power Rule [Derivative Property - Addition]: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + 2(x + 3)(x^2 + 2) \cdot (2x^{2 - 1} + 0) \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Simplify: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + 2(x + 3)(x^2 + 2) \cdot 2x \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Multiply: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^2 + 2)^2 + 4x(x + 3)(x^2 + 2) \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Factor: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^2 + 2)[(x^2 + 2) + 4x(x + 3)] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Inner Brackets] (Parenthesis) Distribute 4x: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2) \bigg[ (x^2 + 2)[(x^2 + 2) + 4x^2 + 12x] \bigg] - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- [Inner Brackets] Combine like terms: [tex]\displaystyle f'(x) = \frac{(x^2 - 3x - 2)(x^2 + 2)(5x^2 + 12x + 2) - (2x - 3)(x + 3)(x^2 + 2)^2}{(x^2 - 3x - 2)^2}[/tex]
- Factor: [tex]\displaystyle f'(x) = \frac{(x^2 + 2) \bigg[ (x^2 - 3x - 2)(5x^2 + 12x + 2) - (2x - 3)(x + 3)(x^2 + 2) \bigg]}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Expand: [tex]\displaystyle f'(x) = \frac{(x^2 + 2) \bigg[ (5x^4 - 3x^3 - 44x^2 - 30x - 4) - (2x^4 + 3x^3 - 5x^2 + 6x - 18) \bigg]}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Distribute negative: [tex]\displaystyle f'(x) = \frac{(x^2 + 2) \bigg[ 5x^4 - 3x^3 - 44x^2 - 30x - 4 - 2x^4 - 3x^3 + 5x^2 - 6x + 18 \bigg]}{(x^2 - 3x - 2)^2}[/tex]
- [Brackets] Combine like terms: [tex]\displaystyle f'(x) = \frac{(x^2 + 2)(3x^4 - 6x^3 - 39x^2 - 36x + 14)}{(x^2 - 3x - 2)^2}[/tex]
And we are done!
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e