[tex]\bf \begin{array}{cccccclllll}
\textit{something}&&\textit{varies directly to}&&\textit{something else}\\ \quad \\
\textit{something}&=&{{ \textit{some value}}}&\cdot &\textit{something else}\\ \quad \\
y&=&{{ k}}&\cdot&x
&& y={{ k }}x
\end{array}\\ \quad \\
[/tex]
and also
[tex]\bf \begin{array}{llllll}
\textit{something}&&\textit{varies inversely to}&\textit{something else}\\ \quad \\
\textit{something}&=&\cfrac{{{\textit{some value}}}}{}&\cfrac{}{\textit{something else}}\\ \quad \\
y&=&\cfrac{{{\textit{k}}}}{}&\cfrac{}{x}
&&y=\cfrac{{{ k}}}{x}
\end{array}
[/tex]
now, we know that V varies directly to T and inversely to P simultaneously
thus[tex]\bf V=T\cdot \cfrac{k}{P}[/tex]
so [tex]\bf V=T\cdot \cfrac{k}{P}\qquad
\begin{cases}
V=42\\
T=84\\
P=8
\end{cases}\implies 42=\cfrac{84k}{8}\implies 4=k
\\\\\\
V=\cfrac{4T}{P}\qquad now\quad
\begin{cases}
V=74\\
P=10
\end{cases}\implies 74=\cfrac{4T}{10}\implies 185=T[/tex]