Respuesta :
ANSWER
[tex] {a}^{3} + {b}^{3} = (a + b)( {a}^{2 } - ab + {b}^{2} )[/tex]
EXPLANATION
To find the expression that is equivalent to
[tex]{a}^{3} + {b}^{3}[/tex]
we must first expand
[tex] {(a + b)}^{3} [/tex]
Then we rearrange to find the required expression.
So let's get started.
[tex] {(a + b)}^{3} = (a + b) {(a + b)}^{2} [/tex]
We expand the parenthesis on the right hand side to get,
[tex] {(a + b)}^{3} = (a + b) ( {a}^{2} + 2ab + {b}^{2} )[/tex]
We expand again to obtain,
[tex] {(a + b)}^{3} = {a}^{3} + 3 {a}^{2}b + 3a {b}^{2} + {b}^{3} [/tex]
Let us group the cubed terms on the right hand side to get,
[tex] {(a + b)}^{3} = {a}^{3} + {b}^{3} + 3 {a}^{2}b + 3a {b}^{2} [/tex]
[tex] {(a + b)}^{3} = {a}^{3} + {b}^{3} + 3ab (a+ b)[/tex]
We make the cubed terms the subject,
[tex] {(a + b)}^{3} - 3ab (a+ b) = {a}^{3} + {b}^{3} [/tex]
We factor to get,
[tex] (a + b)({(a + b)}^{2} - 3ab ) = {a}^{3} + {b}^{3} [/tex]
We expand the bracket on the left hand side to get,
[tex] (a + b)( {a}^{2} + 2ab + {b}^{2} - 3ab ) = {a}^{3} + {b}^{3} [/tex]
We finally simplify to get,
[tex] (a + b)( {a}^{2} - ab + {b}^{2} ) = {a}^{3} + {b}^{3} [/tex]
[tex] {a}^{3} + {b}^{3} = (a + b)( {a}^{2 } - ab + {b}^{2} )[/tex]
EXPLANATION
To find the expression that is equivalent to
[tex]{a}^{3} + {b}^{3}[/tex]
we must first expand
[tex] {(a + b)}^{3} [/tex]
Then we rearrange to find the required expression.
So let's get started.
[tex] {(a + b)}^{3} = (a + b) {(a + b)}^{2} [/tex]
We expand the parenthesis on the right hand side to get,
[tex] {(a + b)}^{3} = (a + b) ( {a}^{2} + 2ab + {b}^{2} )[/tex]
We expand again to obtain,
[tex] {(a + b)}^{3} = {a}^{3} + 3 {a}^{2}b + 3a {b}^{2} + {b}^{3} [/tex]
Let us group the cubed terms on the right hand side to get,
[tex] {(a + b)}^{3} = {a}^{3} + {b}^{3} + 3 {a}^{2}b + 3a {b}^{2} [/tex]
[tex] {(a + b)}^{3} = {a}^{3} + {b}^{3} + 3ab (a+ b)[/tex]
We make the cubed terms the subject,
[tex] {(a + b)}^{3} - 3ab (a+ b) = {a}^{3} + {b}^{3} [/tex]
We factor to get,
[tex] (a + b)({(a + b)}^{2} - 3ab ) = {a}^{3} + {b}^{3} [/tex]
We expand the bracket on the left hand side to get,
[tex] (a + b)( {a}^{2} + 2ab + {b}^{2} - 3ab ) = {a}^{3} + {b}^{3} [/tex]
We finally simplify to get,
[tex] (a + b)( {a}^{2} - ab + {b}^{2} ) = {a}^{3} + {b}^{3} [/tex]
Equivalent equations are equations with the same values
The equivalent expression of a^3 + b^3 is (a + b)(a^2 -ab + b^2)
The expression is given as:
a^3 + b^3
The above expression represents the sum of cube
Using the equation of the sum of cubes, we have:
a^3 + b^3 = (a + b)(a^2 -ab + b^2)
Hence, the equivalent expression of a^3 + b^3 is (a + b)(a^2 -ab + b^2)
Read more about equivalent expression at:
https://brainly.com/question/2972832