Respuesta :
[tex]\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\frac45}{\frac35}=\dfrac43[/tex]
Answer:
[tex]\tan x=\frac{4}{3}[/tex]
Step-by-step explanation:
Given : [tex]\sin x=\frac{4}{5}[/tex] and [tex]\cos x=\frac{3}{5}[/tex]
We have to find the ratio for [tex]\tan x[/tex]
Consider the trigonometric ratio, we know the ratio of sine and cosine is tangent.
Written mathematically as,
[tex]\tan x=\frac{\sin x}{\cos x}[/tex]
Substitute, we get,
[tex]\tan x=\dfrac{\frac{4}{5}}{\frac{3}{5}}[/tex]
Simplify, we have,
[tex]\tan x=\frac{4\times 5}{5 \times 3}[/tex]
Simplify , we get,
[tex]\tan x=\frac{4}{3}[/tex]
Thus, [tex]\tan x=\frac{4}{3}[/tex]