Geno7
contestada

Given sinx=4/5 and cosx=3/5 .



What is ratio for ​ tanx ​ ?



Enter your answer in the boxes as a fraction in simplest form.

Respuesta :

[tex]\tan x=\dfrac{\sin x}{\cos x}=\dfrac{\frac45}{\frac35}=\dfrac43[/tex]

Answer:

[tex]\tan x=\frac{4}{3}[/tex]

Step-by-step explanation:

Given : [tex]\sin x=\frac{4}{5}[/tex] and  [tex]\cos x=\frac{3}{5}[/tex]

We have to find the ratio for  [tex]\tan x[/tex]

Consider the trigonometric ratio, we know the ratio of sine and cosine is tangent.

Written mathematically as,

[tex]\tan x=\frac{\sin x}{\cos x}[/tex]

Substitute, we get,

[tex]\tan x=\dfrac{\frac{4}{5}}{\frac{3}{5}}[/tex]

Simplify, we have,

 [tex]\tan x=\frac{4\times 5}{5 \times 3}[/tex]

Simplify , we get,

[tex]\tan x=\frac{4}{3}[/tex]

Thus,  [tex]\tan x=\frac{4}{3}[/tex]