Respuesta :

Answer:

Solution ( [tex]\frac{26}{7}[/tex] ,  [tex]\frac{-3}{7}[/tex])

Step-by-step explanation:

Given  :  3x - 2y = 12 and 6x + 3y = 21.

To find : Solve the system of equations and choose the correct ordered pair.

Solution : We have given

3x - 2y = 12 -------(1)

6x + 3y = 21-------(2)

Multiplying the equation(1) by 2 , it become.

6x - 4y = 24 .

Now subtract it from equation (2).

6x + 3y = 21

(-)6x - (+)4y = (-)24 .

____________

0 + 7y = -3.

On dividing both sides by 7.

y = [tex]\frac{-3}{7}[/tex].

Plug the y = [tex]\frac{-3}{7}[/tex] in equation 2 .

 6x  + [tex]3*\frac{-3}{7}[/tex] = 21

6x + [tex]\frac{-9}{7}[/tex]  = 21.

On multiplying both sides by 7

42x  -9 = 21 *7 .

42x  -9 = 147 .

On adding both sides by 9

42x = 147 + 9 .

42x = 156.

On dividing both sides by 42.

x = [tex]\frac{156}{42}[/tex].

x = [tex]\frac{26}{7}[/tex].

Therefore, Solution ( [tex]\frac{26}{7}[/tex] ,  [tex]\frac{-3}{7}[/tex])