A line has a slope of 4/3. Through which two points could this line pass?


A. (24, 19), (8, 10)

B. (10, 8), (16, 0)

C. (28, 10), (22, 2)

D. (4, 20), (0, 17)

Respuesta :

we know that

A line has a slope of [tex]\frac{4}{3}[/tex]

The formula to calculate the slope between two points is equal to

[tex]m=\frac{y2-y1}{x2-x1}[/tex]

we will proceed to calculate the slope in each case and compare with the slope of the given line to determine the solution

case A) [tex](24, 19)\ (8, 10)[/tex]

substitute in the formula

[tex]m=\frac{10-19}{8-24}[/tex]

[tex]m=\frac{-9}{-16}[/tex]

[tex]m=\frac{9}{16}[/tex]

[tex]\frac{9}{16} \neq \frac{4}{3}[/tex]

therefore

case A) is not the solution    

case B) [tex](10, 8)\ (16, 0)[/tex]

substitute in the formula

[tex]m=\frac{0-8}{16-10}[/tex]

[tex]m=\frac{-8}{6}[/tex]

[tex]m=-\frac{4}{3}[/tex]

[tex]-\frac{4}{3} \neq \frac{4}{3}[/tex]

therefore

case B) is not the solution    

case C) [tex](28, 10)\ (22, 2)[/tex]

substitute in the formula

[tex]m=\frac{2-10}{22-28}[/tex]

[tex]m=\frac{-8}{-6}[/tex]

[tex]m=\frac{4}{3}[/tex]

[tex]\frac{4}{3} = \frac{4}{3}[/tex]

therefore

case C) could be the solution    

case D) [tex](4, 20)\ (0, 17)[/tex]

substitute in the formula

[tex]m=\frac{17-20}{0-4}[/tex]

[tex]m=\frac{-3}{-4}[/tex]

[tex]m=\frac{3}{4}[/tex]

[tex]\frac{3}{4} \neq \frac{4}{3}[/tex]

therefore

case D) is not the solution  

the answer is

The line could be through the points [tex](28, 10)\ (22, 2)[/tex]