Which equation is the inverse of 5y+4 = (x+3)^2 + 1/2

A. Y=1/5 x^2 + 6/5 x + 11/10

B. Y=3 plus or minus square root 5x + 7/2

C. -5y -4 = -(x+3)^2 -1/2

D. Y= -3 plus or minus square root 5x + 7/2

Respuesta :

Answer:

Option D is correct.

Step-by-step explanation:

Given equation is [tex]5y+4=(x+3)^2+\frac{1}{2}[/tex]

We need to find inverse of the function.

Let x be the independent variable or the function is in x variable.

So,

we Simplify the given equation for variable of x.

[tex]5y+4=(x+3)^2+\frac{1}{2}[/tex]

[tex]5y+4-\frac{1}{2}=(x+3)^2[/tex]

[tex]5y+\frac{7}{2}=(x+3)^2[/tex]

[tex]\pm\sqrt{5y+\frac{7}{2}}=x+3[/tex]

[tex]x+3=\pm\sqrt{5y+\frac{7}{2}}[/tex]

[tex]x=-3\pm\sqrt{5y+\frac{7}{2}}[/tex]

Inverse of the given equation = [tex]-3\pm\sqrt{5y+\frac{7}{2}}[/tex]

Therefore, Option D is correct.