Given that bisects ∠CEA, which statements must be true? Check all that apply. m∠CEA = 90° m∠CEF = m∠CEA + m∠BEF m∠CEB = 2(m∠CEA) m∠BEF = 135° ∠CEF is a straight angle. ∠AEF is a right angle.

Respuesta :

the 1,3,4
that is what i think it might be but i could be wrong

see the attached figure to better understand the problem

we know that

An angle bisector divides the angle into two angles with equal measures

So

m∠CEA=[tex] 90 [/tex]°

m∠AEB=m∠BEC=[tex] 45 [/tex]°

Statements

case 1) m∠CEA=[tex] 90 [/tex]°

Is True

∠CEA is a right angle

case 2) m∠CEF = m∠CEA + m∠BEF

Is False

we know that

m∠CEF=[tex] 180 [/tex]° ---> is a straight angle

and

m∠CEA + m∠BEF=[tex] 90+135=225 [/tex]°

m∠CEF [tex] \neq [/tex] m∠CEA + m∠BEF

case 3) m∠CEB = 2(m∠CEA)

Is False

m∠CEB=[tex] 45 [/tex]°

2(m∠CEA)=[tex] 2*90=180 [/tex]°

m∠CEB [tex] \neq [/tex] 2(m∠CEA)

case 4) m∠BEF = 135°

Is True

m∠BEF=m∠BEA+m∠AEF

m∠BEA=[tex] 45 [/tex]°

m∠AEF=[tex] 90 [/tex]°

Substitute

m∠BEF=[tex] 45+90=135 [/tex]°

case 5) ∠CEF is a straight angle

Is True

m∠CEF=[tex] 180 [/tex]°

case 6) ∠AEF is a right angle

Is True

m∠AEF=[tex] 90 [/tex]°

therefore

the answers are

m∠CEA=[tex] 90 [/tex]°

m∠BEF = 135°

∠CEF is a straight angle

∠AEF is a right angle

Ver imagen calculista