Respuesta :

Answer:

Complete factorization of 3a²+5a-12 is:

(3a-4)(a+3)

Step-by-step explanation:

We have to factorize the expression:

3a²+5a-12

3a²+5a-12=3a²+9a-4a-12   (by splitting the middle term)

                =3a(a+3)-4(a+3)

                = (3a-4)(a+3)

⇒ 3a²+5a-12=(3a-4)(a+3)

Hence, Complete factorization of 3a²+5a-12 is:

(3a-4)(a+3)

Answer:

Applying factor polynomials, you will find:

[tex]3a^2+5a-12=\left(3a-4\right)\left(a+3\right)[/tex]

Step-by-step explanation:

The exercise presents the equation: [tex]3a^{2} + 5a - 12[/tex].

For factoring an equation, you should write the given equation in factors. Therefore, for solving this exercise, you need to find the factors.

  1. You should rewrite the equation.

        [tex]3a^2+5a-12= 3a^2-4a+5a-12[/tex]

    2. After that, you should break the expression in groups.

        [tex]3a^2-4a+5a-12= (3a^2-4a)+(9a-12)[/tex]

    3. Next step, you should factor out each term. For the first factor use a and the second factor use 3.

        [tex](3a^2-4a)+(9a-12)= a(3a-4)+3(3a-4)[/tex]

     Here it is possible to see that  [tex](3a-4)[/tex] is a factor common.

    4. Finally, factor out  [tex]\left(3a-4\right)\[/tex] in previous expression.

        [tex]\left(3a-4\right)\left(a+3\right)[/tex]

Thus,  [tex]3a^2+5a-12=\left(3a-4\right)\left(a+3\right)[/tex].

Learn more about factor an expression here:

https://brainly.com/question/11579257