Respuesta :

[tex]\bf \begin{cases} f(x)=\sqrt{x+9}\\\\ g(x)=8x+13 \end{cases}\qquad (f\circ g)(x)\iff f(\ g(x)\ )=\sqrt{\boxed{g(x)}+9} \\\\\\ thus\qquad f(\ g(x)\ )=\sqrt{\boxed{8x+13}+9}[/tex]

simplify it away

Answer:

The answer will be : [tex]2\sqrt{2x-1}[/tex]

Step-by-step explanation:

f(x) = Square root of quantity x plus nine.

Mathematically we can write this as:

[tex]f(x)=\sqrt{x+9}[/tex]

[tex]g(x)=8x-13[/tex]

Now, we have to find [tex]f(g(x))[/tex]

So, we will replace x in f(x) with : 8x-13.

[tex]f(g(x))=f(8x-13)[/tex]

= [tex]\sqrt{8x-13+9}[/tex]

= [tex]\sqrt{8x-4}[/tex]

= [tex]\sqrt{4(2x-1)}[/tex]

= [tex]2\sqrt{2x-1}[/tex]

Hence, answer is : f(g(x)) = [tex]2\sqrt{2x-1}[/tex]