Respuesta :

Answer:

Hence, the determinant of the coefficient matrix of the system is:

                                            65

Step-by-step explanation:

We are given a system of linear equation in terms of variable x,y and z as:

                   [tex]-3x+2y-6z=5[/tex]

                   [tex]-7x+9y-z=4[/tex]

                   [tex]-2x+5y+2z=9[/tex]

Hence, the coefficient matrix that is obtained with the help of these system of equation let us denote by A is:

[tex]A=\left[\begin{array}{ccc}-3&2&-6\\-7&9&-1\\-2&5&2\end{array}\right][/tex]

Now let us find the determinant of the matrix by expanding along row 1 as:

[tex]=-3(2\times 9-(1\times (-5))-2(-7\times 2-(-1)\times (-2))-6(-7\times 5-9\times (-2))\\\\\\=(-3)\times 23-2\times (-16)-6\times (-17)\\\\=-69+32+102\\\\=65[/tex]

              Hence, the determinant is:

                                    65

Answer:

c. 65

Step-by-step explanation:

edg21