Solving:
[tex] \left \{ {{4x-6y=10\:(I)} \atop {3x+6y=4\:(II)}} \right. [/tex]
[tex] \left \{ {{4x-\diagup\!\!\!\!\!6y=10} \atop {3x+\diagup\!\!\!\!\!6y=4}} \right. [/tex]
[tex]\left \{ {{4x=10} \atop {3x=4}} \right.[/tex]
----------------------
[tex]7x = 14[/tex]
[tex]x = \frac{14}{7} [/tex]
[tex]\boxed{\boxed{x = 2}}\end{array}}\qquad\quad\checkmark[/tex]
Now replace the found value of "x" in equation (II) to find the value of "y"
[tex]3x+6y=4\:(II)[/tex]
[tex]3*(2) + 6y = 4[/tex]
[tex]6 + 6y = 4[/tex]
[tex]6y = 4 - 6[/tex]
[tex]6y = - 2[/tex]
[tex]y = \frac{-2}{6} \frac{\div2}{\div2} \to \boxed{\boxed{y = \frac{-1}{3}}} \end{array}}\qquad\quad\checkmark[/tex]
Answer:
x = 2
y = - 1/3