What’s the velocity of the rocket? use this text code v=\sqrt{\frac{2KE}{m}}



A rocket with a mass of 10,000 kilograms is propelled upward with 8,000,000 joules of kinetic energy. The velocity of the rocket is meters/second.

NextReset

Respuesta :

Hope this helps you.
Ver imagen AbhiGhost
Data:
KE (Kinetic Energy) =  8000000 Joules
m (mass) = 10000 Kg 
v (speed) = ? (m/s)

Formula:
[tex]v=\sqrt{\frac{2KE}{m}}[/tex]

Solving:
[tex]v=\sqrt{\frac{2KE}{m}}[/tex]
[tex]v=\sqrt{\frac{2*8000000}{10000}}[/tex]
[tex]v = \sqrt{ \frac{1600\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0}{1\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0} } [/tex]
[tex]v = \sqrt{1600} [/tex]
[tex]\boxed{\boxed{v = 40\:m/s}}\end{array}}\qquad\quad\checkmark[/tex]

Another way to do:

Formula:
[tex]K_{E} = \frac{1}{2}*m*v^2 [/tex]

Solving:
[tex]K_{E} = \frac{1}{2}*m*v^2 [/tex]
[tex]8000000 = \frac{1}{2}*10000*v^2[/tex]
[tex]8000000*2 = 1*10000*v^2[/tex]
[tex]16000000 = 10000v^2[/tex]
[tex]10000v^2 = 16000000[/tex]
[tex]v^2 = \frac{1600\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0}{1\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0\diagup\!\!\!\!0} [/tex]
[tex]v^2 = 1600[/tex]
[tex]v = \sqrt{1600} [/tex]
[tex]\boxed{\boxed{v = 40\:m/s}}\end{array}}\qquad\quad\checkmark[/tex]