[tex]f(x)=\ln x\implies f'(x)=\dfrac1x[/tex]
[tex]g(x)=x^2-1\implies g'(x)=2x[/tex]
You have [tex]2x^2>1[/tex] for all [tex]x\ge1[/tex], and dividing by [tex]x[/tex] gives [tex]2x>\dfrac1x[/tex], or [tex]g'(x)>f'(x)[/tex]. By the racetrack principle, then, it follows that [tex]g(x)>f(x)[/tex].