Respuesta :
Answer: C(17,11)
Step-by-step explanation:
We know that C(m,n) are denote to a binomial coefficient. It is the number of ways of selecting n unordered outcomes from n possibilities.
The value of the binomial coefficient for non-negative m and n is given by:-
[tex]C(m,n)=\frac{m!}{n!(m-n)!}[/tex]
[tex]C(17,6)=\frac{17!}{(17-6)!6!}=\frac{17!}{11!6!}[/tex]
[tex]C(6,17)=\frac{6!}{(6-17)!17!}=\frac{6!}{(-11)!17!}[/tex], which is not defined value.
[tex]C(11,6)=\frac{11!}{(11-6)!6!}=\frac{11!}{5!6!}\neqC(17,6)[/tex]
[tex]C(17,11)=\frac{17!}{(17-11)!11!}=\frac{17!}{6!11!}=C(17,6)[/tex]