Respuesta :

the answer is (17,11)

Answer: C(17,11)

Step-by-step explanation:

We know that C(m,n) are denote to a binomial coefficient. It is the number of ways of selecting n unordered outcomes from n possibilities.

The value of the binomial coefficient for non-negative m and n is given by:-

[tex]C(m,n)=\frac{m!}{n!(m-n)!}[/tex]

[tex]C(17,6)=\frac{17!}{(17-6)!6!}=\frac{17!}{11!6!}[/tex]

[tex]C(6,17)=\frac{6!}{(6-17)!17!}=\frac{6!}{(-11)!17!}[/tex], which is not defined value.

[tex]C(11,6)=\frac{11!}{(11-6)!6!}=\frac{11!}{5!6!}\neqC(17,6)[/tex]

[tex]C(17,11)=\frac{17!}{(17-11)!11!}=\frac{17!}{6!11!}=C(17,6)[/tex]