contestada

Circle D has a radius of 21 millimeters and central angle, ∠EDF, which measures 60°. Find the exact length of Arc of EF .

Respuesta :

central angle = 60
radius = 21mm

Length of Arc = ∅/180 × radius

EF = (60/360) x (21) = 7 mm

Answer:

[tex]7 \pi\ mm[/tex]

Step-by-step explanation:

we know that

The circumference of a circle is equal to

[tex]C=2\pi r[/tex]

In this problem we have

[tex]r=21\ mm[/tex]

substitute

[tex]C=2\pi (21)=42\pi\ mm[/tex]

[tex]360\°[/tex] subtends the complete circle of length equal to [tex]42\pi\ mm[/tex]

so by proportion  

Find the length of arc which a central angle of [tex]60\°[/tex]

[tex]\frac{42\pi}{360}\frac{\ mm}{degrees}=\frac{x}{60}\frac{\ mm}{degrees} \\ \\x=42\pi *60/360\\ \\ x= 7 \pi\ mm[/tex]