The height of a triangle is 5 m less than its base. The area of the triangle is 42 m². What is the length of the base? Enter your answer in the box.

Respuesta :

Area of a triangle=1/2bh
h=b-5
42=1/2*b*(b-5)
42=1/2*b^2-5b
84=b^2-5b
b^2-5b-84=0
b^2+7b-12b-84=0
b(b+7)-12(b+7)=0
b=12,b=-7

so width cant be negative so base =12 m
H=12-5=7 m

Answer:

The length of the base is 12 m

Step-by-step explanation:

Given : The height of a triangle is 5 m less than its base. The area of the triangle is 42 m².

We have to find the  length of the base.

Given the height of triangle is 5 m less than base

Let base be x then height is ( x -5 ) m

Area of triangle is [tex]\frac{1}{2} \times base \times height[/tex]

also given area of triangle is 42 m²

substitute, we get,

[tex]42=\frac{1}{2} \times x \times (x-5)[/tex]

Solving , we get,

[tex]84=x(x-5)[/tex]

Simplify we get a quadratic equation as,

[tex]x^2-5x-84=0[/tex]

Using quadratic formula,

For the standard quadratic equation [tex]ax^2+bx+c=0[/tex] , the solution of roots is given by, [tex]x_{1,\:2}=\frac{-b\pm \sqrt{b^2-4ac}}{2a}[/tex]

For a = 1 , b= -5 , c = -84 , we get

[tex]x_{1,\:2}=\frac{-\left(-5\right)\pm \sqrt{\left(-5\right)^2-4\cdot \:1\left(-84\right)}}{2\cdot \:1}[/tex]

Simplify, we get

[tex]=\frac{5\pm\sqrt{361}}{2\cdot \:1}[/tex]

We know [tex]\sqrt{361}=19[/tex] , we get

[tex]x_{1,2}=\frac{5\pm19}{2}[/tex]

[tex]x_1=\frac{5+19}{2}[/tex] and [tex]x_2=\frac{5-19}{2}[/tex]

[tex]x_1=12[/tex] and [tex]x_2=-7[/tex]

ignoring negative value as side cannot be negative.

thus, x = 12

base is 12 m  then height is ( 12 -5 ) m = 4 m

Thus, the length of the base is 12 m.