Respuesta :

schiou
the vertex is (-2,-36)

Answer:

Vertex of given quadratic function [tex]f(x)=5x^2+20x-16[/tex] is (-2,-36)

Step-by-step explanation:

Given function [tex]f(x)=5x^2+20x-16[/tex]

We have to find the vertex of the given function [tex]f(x)=5x^2+20x-16[/tex].

The standard quadratic function is represented by [tex]f(x)=a(x-h)^2+k[/tex] ,  

Where (h,k) represents the vertex and a ≠ 0.

If a is positive, the graph opens upward, and if a is negative, then it opens downward.

We first write the given equation in standard form ,by using completing square,

We know [tex](a-b)^2=a^2-2ab+b^2[/tex]

First taking 5 common from function, we have,

[tex]f(x)=5(x^2+4x-\frac{16}{5})[/tex]

Comparing we have, a = x and

-2ab= +4x ⇒ -2b = 4 ⇒ b = -2

Add and subtract b[tex]b^2=4[/tex] , we get,

[tex]f(x)=5(x^2+4x+4-4-\frac{16}{5})[/tex]

On simplifying, we have,

[tex]f(x)=5((x+2)^2+\frac{-20-16}{5})[/tex]

[tex]f(x)=5((x+2)^2+\frac{-36}{5})[/tex]

We get, [tex]f(x)=5((x+2)^2)-36[/tex]

On comapring with standard equtaion , we have h = -2 and k = -36

Thus, vertex of given quadratic function [tex]f(x)=5x^2+20x-16[/tex] is (-2 ,-36)