contestada

Find the value or values of y in the quadratic equation y2 + 4y + 4 = 7. A. y = −2 + √ 7 , y = −2 − √ 7 B. y = 2, y = 7 C. y = −2√ 7 , y = 2√ 7 D. y = 2 + 2√ 7 , y = 2 − 2√ 7

Respuesta :

A) y = -2 + rt7, y = -2 - rt7

Answer:

Option A

The values of y are: [tex]y=-2+\sqrt{7}[/tex] or [tex]y=-2-\sqrt{7}[/tex].

Step-by-step explanation:

[tex]y^2+4y+4=7[/tex]

Subtract 7 from both the sides:

[tex]y^2+4y+4-7=7-7[/tex]

On Simplify:

[tex]y^2+4y-3=0[/tex]

Solve with the quadratic formula:

For a quadratic equation of the form [tex]ax^2+bx+c=0[/tex] the solutions are:

[tex]x_{1,2}=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

For a=1, b=4 and c=-3 we have,

[tex]y_{1,2}=\frac{-4\pm \sqrt{4^2-4\cdot 1 \cdot (-3)}} {2\cdot 1}[/tex]

[tex]y_{1,2}=\frac{-4\pm\sqrt{16+12}} {2}[/tex]=[tex]\frac{-4\pm\sqrt{28}} {2}[/tex]

on solving we get, [tex]y_{1,2}=\frac{-4\pm2\sqrt{7}}{2}[/tex]=[tex]-2\pm \sqrt{7}[/tex]

therefore, the values of y are:

[tex]y=-2+\sqrt{7}[/tex] or [tex]y=-2-\sqrt{7}[/tex]