[tex]\bf \cfrac{a^2-1}{2-5a}\times \cfrac{15-6}{a^2+5a-6}\\\\
-----------------------------\\\\
recall\quad \textit{difference of squares}
\\ \quad \\
(a-b)(a+b) = a^2-b^2\qquad \qquad
a^2-b^2 = (a-b)(a+b)\\\\
thus\quad a^2-1\iff a^2-1^2\implies (a-1)(a+1)
\\\\\\
now\quad a^2+5a-6\implies (a+6)(a-1)\\\\
-----------------------------\\\\
thus
\\\\\\
\cfrac{a^2-1}{2-5a}\times \cfrac{15-6}{a^2+5a-6}\implies \cfrac{(a-1)(a+1)}{2-5a}\times \cfrac{3(5a-2)}{(a+6)(a-1)}\\\\
-----------------------------\\\\
[/tex]
[tex]\bf now\quad 3(5a-2) \iff -3(2-5a)\\\\
-----------------------------\\\\
thus
\\\\\\
\cfrac{\underline{(a-1)}(a+1)}{\underline{2-5a}}\times \cfrac{-3\underline{(2-5a)}}{(a+6)\underline{(a-1)}}\implies \cfrac{-3(a+1)}{a+6}[/tex]