The equation f(x) = 5x2 − 30x + 6 represents a parabola. What is the vertex of the parabola?

(−5, 281)
(5, −19)
(−3, 141)
(3, −39)

Respuesta :

The answer is D. (3,-39)

Just plug the numbers into the formula to find the Parabola.

f(x) = ax[tex] x^{2} [/tex]+ bx + c

Then find X:

x = - 
[tex] \frac{b}{2a} [/tex]
Then solve.


Hope this helped. Have a great day!

Answer:

D. [tex](3,-39)[/tex]

Step-by-step explanation:

We have been given an equation [tex]f(x)=5x^2-30x+6[/tex]. We are asked to find the vertex of parabola for our given equation.

We will use formula [tex]x=\frac{-b}{2a}[/tex] to find the x-coordinate of the vertex of parabola, then we will substitute the value of x-coordinate in our equation to find the y-coordinate of the parabola.

[tex]x=\frac{-(-30)}{2*5}[/tex]

[tex]x=\frac{30}{10}[/tex]

[tex]x=3[/tex]

Therefore, the x-coordinate of the vertex of the parabola is 3.

Now let us substitute [tex]x=3[/tex] in our given equation to find the y-coordinate of the parabola.

[tex]f(3)=5(3)^2-30(3)+6[/tex]

[tex]f(3)=5*9-90+6[/tex]

[tex]f(3)=45-90+6[/tex]

[tex]f(3)=51-90[/tex]

[tex]f(3)=-39[/tex]

So, the y-coordinate of the vertex of parabola is [tex]-39[/tex]. The point [tex](3,-39)[/tex] represents the vertex of the parabola represented by our given equation and option D is the correct choice.