Respuesta :

Answer:

5x+34=50

5×=50-34

5×=16

×=16÷5

Answer:

[tex]\csc A = \dfrac{\sqrt{41}}{5}[/tex]

Step-by-step explanation:

To find the exact value of csc A in simplest radical form using a rational denominator, we can use the reciprocal identities of secant and cosecant:

[tex]\boxed{\sec A = \dfrac{1}{\cos A}}\;\;\;\boxed{\text{csc} A = \dfrac{1}{\sin A}}[/tex]

Given sec A = √(41)/4, we can use the definition of secant as the reciprocal of cosine to find the value of cos A:

[tex]\cos A=\dfrac{1}{\sec A}=\dfrac{1}{\frac{\sqrt{41}}{4}}=\dfrac{4}{\sqrt{41}}[/tex]

Since angle A is in Quadrant I, both sin A and cos A are positive.

Now we can substitute the value of cos A into the trigonometric identity to find sin A:

    [tex]\sin^2 A + \cos^2 A = 1[/tex]

[tex]\sin^2 A + \left(\dfrac{4}{\sqrt{41}}\right)^2 = 1[/tex]

         [tex]\sin^2 A + \dfrac{16}{41} = 1[/tex]

                  [tex]\sin^2 A = 1-\dfrac{16}{41}[/tex]

                  [tex]\sin^2 A =\dfrac{25}{41}[/tex]

                    [tex]\sin A=\sqrt{\dfrac{25}{41}}[/tex]

                    [tex]\sin A=\dfrac{5}{\sqrt{41}}[/tex]

Finally, we can substitute the value of sin A into the reciprocal identity to find csc A:

[tex]\text{csc} A = \dfrac{1}{\sin A} = \dfrac{1}{\frac{5}{\sqrt{41}}} = \dfrac{\sqrt{41}}{5}[/tex]

Therefore, the exact value of csc A in simplest radical form with a rational denominator is:

[tex]\boxed{\csc A = \dfrac{\sqrt{41}}{5}}[/tex]