1. Solve the following equation. Do not use a calculator. Express the answer in EXACT form. \( 2^{3 x-4}=5(3)^{-x+4} \) Applying \( e x p 0 n e n d \) rule 1 (. ท

Respuesta :

Answer:

  x = log(6480)/log(24)

Step-by-step explanation:

You want the solution to the equation 2^(3x-4) = 5(3^(-x+4)).

One base

We can write the equation using one exponential term like this:

  2^(3x)·2^(-4) = 5·3^(-x)·3^4

  (2^3)^x/16 = 5·81/3^x

  (8^x)(3^x) = 16·5·81

  24^x = 6480

Logs

Taking logarithms, we have ...

  x·log(24) = log(6480)

  x = log(6480)/log(24)

__

Additional comment

The numerical value of x is about 2.76158814729.

The relevant rules of exponents are ...

  (a^b)(a^c) = a^(b+c)

  a^-b = 1/a^b

  (a^b)^c = a^(bc)

<95141404393>