Respuesta :

Hello :
f(x)=x²+12x+26
     = x² +2(6)(x) +36-36+26
     = ( x² +2(6)(x) +6²) -10
     =(x+6)²-10....... (vertex form ) 

Answer:

The quadratic function in vertex form is [tex]f(x)=(x+6)^2-10[/tex]

Step-by-step explanation:

Given equation of quadratic function [tex]f(x)=x^2+12x+26[/tex]

We have to write the given quadratic function in vertex form.

For a given quadratic function [tex]f(x)=ax^2+bx+c[/tex] can rewritten in standard form by completing the square.

The standard form of quadratic function [tex]f(x)=a(x-h)^2+k[/tex] , where (h,k) denotes the vertex of the equation.

If a is positive, the graph opens upward, and if a is negative, then it opens downward.

Consider the given function [tex]f(x)=x^2+12x+26[/tex]

Using algebraic identity [tex](a+b)^2=a^2+b^2+2ab[/tex]

We have a = x and 2ab = 12x  ⇒ b = 6

Adding [tex]b^2[/tex] term to complete square and subtract so that the function remain same, we have,

[tex]f(x)=x^2+12x+36-36+26[/tex]

[tex]f(x)=(x+6)^2-10[/tex]

Which is in form of standard form of quadratic function.

Thus, The quadratic function in vertex form is [tex]f(x)=(x+6)^2-10[/tex]