Respuesta :

Answer:

2.02 times

Explanation:

According to Graham's law, the rate of effusion of two gases can be expresed as:

[tex]\frac{Rate_{1}}{Rate_{2}} =\sqrt{\frac{M_{2}}{M_{1}} }[/tex]

Where M are the atomic/molecular masses of the gases.

In this problem, the subscript 1 refers to O₂ gas (32 g/mol), and the subscript 2 refers to Xe gas (131.293 g/mol).

Putting the data in the equation gives us:

[tex]\frac{RateO_{2}}{RateXe}=\sqrt{\frac{131.293}{32} }  =2.02[/tex]

So O₂ effuses at a rate that is 2.02 times faster than the rate of Xe.

[tex]{{\text{O}}_{\text{2}}}[/tex] (g) effuses at a rate that is [tex]\boxed{{\text{2}}{\text{.02}}}[/tex] times that of Xe (g) under the same conditions.

Further Explanation:

Graham’s law of effusion:

Effusion is the process by which molecules of gas travel through a small hole from high pressure to the low pressure. According to Graham’s law, the effusion rate of a gas is inversely proportional to the square root of the molar mass of gas.

The expression for Graham’s law is as follows:

[tex]\boxed{\text{R}\propto \dfrac{1}{\sqrt{\mu}}}[/tex]

Here,

R is the rate of effusion of gas.

[tex]\mu[/tex] is the molar mass of gas.

Higher the molar mass of the gas, smaller will be the rate of effusion and vice-versa.

The rate of effusion of [tex]{{\text{O}}_{\text{2}}}[/tex] is expressed as follows:

[tex]{{\text{R}}_{{{\text{O}}_{\text{2}}}}} \propto \dfrac{1}{{\sqrt {{{{\mu}}_{{{\text{O}}_{\text{2}}}}}} }}[/tex]                   ......(1)

Here,

[tex]{{\text{R}}_{{{\text{O}}_{\text{2}}}}}[/tex] is the rate of effusion of [tex]{{\text{O}}_{\text{2}}}[/tex].

[tex]{{{\mu }}_{{{\text{O}}_{\text{2}}[/tex]  is the molar mass of [tex]{{\text{O}}_{\text{2}}}[/tex].

The rate of effusion of Xe is expressed as follows:

[tex]{{\text{R}}_{{\text{Xe}}}} \propto \dfrac{1}{{\sqrt {{{\mu }}_{{\text{Xe}}}}} }}[/tex]

                                     ......(2)

Here,

[tex]{{\text{R}}_{{\text{Xe}}}}[/tex] is the rate of effusion of Xe.

[tex]{{\mu }}_{{\text{Xe}}}}[/tex] is the molar mass of Xe.

On dividing equation (1) by equation (2),

[tex]\dfrac{{{{\text{R}}_{{{\text{O}}_{\text{2}}}}}}}{{{{\text{R}}_{{\text{Xe}}}}}}=\sqrt{\dfrac{{{{{\mu }}_{{\text{Xe}}}}}}{{{{\mu }}_{{{\text{O}}_{\text{2}}}}}}}}[/tex]                   ......(3)

Rearrange equation (3) to calculate  [tex]{{\text{R}}_{{{\text{O}}_{\text{2}}}}}[/tex].

[tex]{{\text{R}}_{{{\text{O}}_{\text{2}}}}}=\left( {\sqrt {\dfrac{{{{{\mu }}_{{\text{Xe}}}}}}{{{{{\mu }}_{{{\text{O}}_{\text{2}}}}}}}} } \right){{\text{R}}_{{\text{Xe}}}}[/tex]

                                                    ......(4)

The molar mass of [tex]{{\text{O}}_{\text{2}}}[/tex] is 32 g/mol.

The molar mass of Xe is 131.29 g/mol.

Substitute these values in equation (4).

[tex]\begin{aligned}{{\text{R}}_{{\text{Ne}}}}&=\left( {\sqrt {\frac{{{\text{131}}{\text{.29}}}}{{{\text{32}}}}} } \right){{\text{R}}_{{\text{Xe}}}}\\&= \left( {\sqrt {4.1028} } \right){{\text{R}}_{{\text{Xe}}}}\\&=2.02{{\text{R}}_{{\text{Xe}}}}\\\end{aligned}[/tex]

Therefore the rate of effusion of [tex]{{\mathbf{O}}_{\mathbf{2}}}[/tex] is 2.02 times the rate of effusion of Xe.

Learn more:

1. Which statement is true for Boyle’s law: https://brainly.com/question/1158880

2. Calculation of volume of gas: https://brainly.com/question/3636135

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Ideal gas equation

Keywords: Effusion, rate of effusion, molar mass, O2, Xe, 2.02 times, Graham’s law, inversely proportional, square root.