Respuesta :

Length of Arc = Ф/360 * 2πr

l = 120/360 * 2π(6)

l = 1/3 * 12π

l = 4π

In short, Your Answer would be: 4π Feet

Hope this helps!

Answer:

Given that: AB = 12 ft.

From the given figure we have;

diameter = AB = 12 ft.

[tex]\text{radius} = \frac{diameter}{2} =\frac{12}{2} = 6[/tex] ft.

Supplementary angles states that the two adjacent angles are sum up to 180 degree.

[tex]\angle APC[/tex] and [tex]60^{\circ}[/tex] are supplementary angles.

by definition of supplementary angles;

[tex]\angle APC +60^{\circ} = 180^{\circ}[/tex]

Subtract  [tex]60^{\circ}[/tex] from both sides we get;

[tex]\angle APC = 120^{\circ}[/tex]

To find the length of arc AC;

Formula for length(L) of arc is;

[tex]L = 2\pi r \cdot \frac{\theta}{360^{\circ}}[/tex]

[tex]\theta= \angle APC =120^{\circ}[/tex]

substitute the given values; we have;

[tex]L = 2 \pi (6) \cdot \frac{120}{360} = 2 \pi (6) \cdot \frac{1}{3}= 2 \pi (2) = 4 \pi[/tex] ft

Therefore, length of arc AC is, [tex]4 \pi[/tex] ft