Respuesta :
[tex]a_n=a_1*r^{(n-1)}
\\\\
where \\\\
a_n=general \ term
\\a_1=first \ term
\\r=common\ ratio \\ (n-1)=same \ general \ term -1[/tex]
the data provided by the problem:
[tex]a_2=24 \\ a_5=-648 \\ \\ a_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_5 \\24=a_1*r^{(2-1)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -648= a_1*r^{(5-1)} \\24=a_1*r^1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -648 = a_1*r^4 \\\\a_1= \frac{24}{r} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_1= \frac{-648}{r^4} \\ \\ ----------------------- [/tex]
[tex]a_1=a_1 \\\\\frac{24}{r} = \frac{-648}{r^4} \\\\ r^4(24)=r(-648) \\24r^4 = -648r \\24r^4+648r=0 \\ 24r(r^3+27)=0 \\ 24r \left(r+3\right)\left(r^2-3r+9\right)=0 \\ \\ 24r = 0 \ \ \ \ \ \ \ \ \ \ (r + 3) = 0 \ \ \ \ \ \ \ \ \ (r^2-3x+9)=0 \\\\ ----------------------------[/tex]
[tex]*24r=0 \\r= \frac{0}{24} \\r=0 \\\\ *r+3=0 \\ r = 0-3 \\r=-3 \\\\ *r^2-3x+9=0 \\ \\x_{1,2}= \frac{-b+ \sqrt{b^2-4ac}}{2a} \\\\x_{1}= \frac{-(-3)+\sqrt{(-3)^2-4(1)(9)}}{2(1)} \\x_1=\frac{3+\sqrt{9-36}}{2}\\ \\x_1=\frac{3+\sqrt{-27}}{2} \\x_1=\frac{3+3\sqrt{3}i}{2} \\\\x_2=\frac{-(-3)-\sqrt{(-3)^2-4(1)(9)}}{2(1)} \\ x_2=\frac{3-\sqrt{9-36}}{2} \\x_2=\frac{3-\sqrt{-27}}{2} \\ x_2=\frac{3-3\sqrt{3i}}{2}[/tex]
---------------------------------------------------------
r ≠ 0
r = -3
[tex]a_n=a_1*r^{(n-1)} \\ \\ a_2 \\24=a_1*(-3)^{(2-1)} \\24 = a_1*(-3)^1 \\24=a_1*-3 \\ \\ a_1= \frac{24}{-3} \\a_1=-8 [/tex]
-------------------------------
[tex]a_{12}=a_1*r^{n-1} \\a_{12}=-8*-3^{12-1} \\a_{12}=-8*-3^{11} \\a_{12}=-8*-177147 \\a_{12}=1417176 [/tex]
The 12th term is 1417176
the data provided by the problem:
[tex]a_2=24 \\ a_5=-648 \\ \\ a_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_5 \\24=a_1*r^{(2-1)} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -648= a_1*r^{(5-1)} \\24=a_1*r^1 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ -648 = a_1*r^4 \\\\a_1= \frac{24}{r} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ a_1= \frac{-648}{r^4} \\ \\ ----------------------- [/tex]
[tex]a_1=a_1 \\\\\frac{24}{r} = \frac{-648}{r^4} \\\\ r^4(24)=r(-648) \\24r^4 = -648r \\24r^4+648r=0 \\ 24r(r^3+27)=0 \\ 24r \left(r+3\right)\left(r^2-3r+9\right)=0 \\ \\ 24r = 0 \ \ \ \ \ \ \ \ \ \ (r + 3) = 0 \ \ \ \ \ \ \ \ \ (r^2-3x+9)=0 \\\\ ----------------------------[/tex]
[tex]*24r=0 \\r= \frac{0}{24} \\r=0 \\\\ *r+3=0 \\ r = 0-3 \\r=-3 \\\\ *r^2-3x+9=0 \\ \\x_{1,2}= \frac{-b+ \sqrt{b^2-4ac}}{2a} \\\\x_{1}= \frac{-(-3)+\sqrt{(-3)^2-4(1)(9)}}{2(1)} \\x_1=\frac{3+\sqrt{9-36}}{2}\\ \\x_1=\frac{3+\sqrt{-27}}{2} \\x_1=\frac{3+3\sqrt{3}i}{2} \\\\x_2=\frac{-(-3)-\sqrt{(-3)^2-4(1)(9)}}{2(1)} \\ x_2=\frac{3-\sqrt{9-36}}{2} \\x_2=\frac{3-\sqrt{-27}}{2} \\ x_2=\frac{3-3\sqrt{3i}}{2}[/tex]
---------------------------------------------------------
r ≠ 0
r = -3
[tex]a_n=a_1*r^{(n-1)} \\ \\ a_2 \\24=a_1*(-3)^{(2-1)} \\24 = a_1*(-3)^1 \\24=a_1*-3 \\ \\ a_1= \frac{24}{-3} \\a_1=-8 [/tex]
-------------------------------
[tex]a_{12}=a_1*r^{n-1} \\a_{12}=-8*-3^{12-1} \\a_{12}=-8*-3^{11} \\a_{12}=-8*-177147 \\a_{12}=1417176 [/tex]
The 12th term is 1417176